Behavioral influences on cortical neuronal responses to optic flow.

نویسندگان

  • Marc J Dubin
  • Charles J Duffy
چکیده

Optic flow selectively activates neurons in medial superior temporal (MST) cortex. We find that many MST neurons yield larger and more selective responses when the optic flow guides a subsequent eye movement. Smaller, less selective responses are seen when optic flow is preceded by a flashed precue that guides eye movements. Selectivity can decrease by a third (32%) after a flashed precue is presented at a peripheral location as a small spot specifying the target location of the eye movement. Smaller decreases in selectivity (18%) occur when the precue is presented centrally with its shape specifying the target location. Shape precues presented centrally, but not linked to specific target locations, do not appear to alter optic flow selectivity. The effects of spatial precueing can be reversed so that the precue leads to larger and more selective optic flow responses: A flashed precue presented as a distracter before behaviorally relevant optic flow is associated with larger optic flow responses and a 45% increase in selectivity. Together, these findings show that spatial precues can decrease or increase the size and selectivity of optic flow responses depending on the associated behavioral contingencies.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Task contingencies and perceptual strategies shape behavioral effects on neuronal response profiles.

We presented optic flow simulating eight directions of self-movement in the ground plane, while monkeys performed delayed match-to-sample tasks, and we recorded dorsal medial superior temporal (MSTd) neuronal activity. Randomly selected sample headings yield smaller test responses to the neuron's preferred heading when it is near the sample's heading direction and larger test responses to the p...

متن کامل

Cortical area MSTd combines visual cues to represent 3-D self-movement.

As arboreal primates move through the jungle, they are immersed in visual motion that they must distinguish from the movement of predators and prey. We recorded dorsal medial superior temporal (MSTd) cortical neuronal responses to visual motion stimuli simulating self-movement and object motion. MSTd neurons encode the heading of simulated self-movement in three-dimensional (3-D) space. 3-D hea...

متن کامل

Effect of phasic electrical locus coeruleus stimulation on inhibitory and excitatory receptive fields of layer V barrel cortex neurons in male rat

Introduction: It is believed that Locus Coeruleus (LC) influences the sensory information processing. However, its role in cortical surround inhibitory mechanism is not understood. In this experiment, using controlled mechanical displacement of whiskers we investigated the effect of phasic electrical stimulation of LC on response of layer V barrel cortical neurons in anesthetized rat. Methods: ...

متن کامل

Optic flow signals in extrastriate area MST: comparison of perceptual and neuronal sensitivity.

The medial superior temporal area of extrastriate cortex (MST) contains signals selective for nonuniform patterns of motion often termed "optic flow." The presence of such tuning, however, does not necessarily imply involvement in perception. To quantify the relationship between these selective neuronal signals and the perception of optic flow, we designed a discrimination task that allowed us ...

متن کامل

Receptive field dynamics underlying MST neuronal optic flow selectivity.

Optic flow informs moving observers about their heading direction. Neurons in monkey medial superior temporal (MST) cortex show heading selective responses to optic flow and planar direction selective responses to patches of local motion. We recorded MST neuronal responses to a 90 x 90 degrees optic flow display and to a 3 x 3 array of local motion patches covering the same area. Our goal was t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cerebral cortex

دوره 17 7  شماره 

صفحات  -

تاریخ انتشار 2007